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LE'lTER TO THE EDITOR 

E expansion for directed animals 
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Laboratoire de Physique des Solides de I'Ecole Normale SupCrieure, 24 rue Lhomond- 
75231 Paris Ctdex 05, France 

Received 23 February 1982 

Abstract. We introduce the problem of directed lattice animals and show that they are 
highly anisotropic with two different correlation lengths 61 and &, parallel and perpen- 
dicular to the privileged direction. We introduce a field theory and calculate the critical 
exponents to first order in E = d,-d where the upper critical dimension, d,, is 7. 

The problem of directed percolation (Broadbent and Hammersley 1957) is a variant 
of isotropic bond percolation that has received considerable attention recently (Blease 
1977, Obukhov 1980, Cardy and Sugar 1980, Dhar and Barma 1981, Kinzel and 
Yeomans 1981, Redner 1981). In directed percolation, bonds on alattice are randomly 
occupied by diodes (rather than resistors) which always point along the positive 
direction of the lattice. Two sites are considered to be in the same cluster if there is 
a continuous path between them, or between a third site and each of them, alottg the 
positive sense of the diodes. 

A problem related to isotropic percolation is the statistics of lattice animals (Domb 
1976, Stauffer 1978a, b, Lubensky and Isaacson 1979). This is a purely geometrical 
problem, closely related to the configurational statistics of dilute branched polymers, 
in which one counts A ( n ) ,  the number of clusters per site on a lattice containing n 
bonds. For large n, 

~ ( n ) - n - % "  (1) 
where 8 is a critical exponent and A is a number related to the coordination number 
of the lattice. In this letter we shall consider the statistics of directed lattice animals 
(or branched polymers) which start from a single seed and in which all bonds point 
in the positive direction, as shown in figure 1. 

As in the case of directed percolation (Dhar and Barma 1981, Domany and Kinzel 
1981, Kinzel and Yeomans 1981, Klein and Kinzel 1981), we find that directed 
animals are highly anisotropic with correlation lengths 611 and tl, parallel and perpen- 
dicular to the privileged direction of diode orientation, satisfying 

h - n Y '  (2a) 

61-n'L. (2b)  

t Permanent address. 
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Figure 1. ( a )  A directed animal on a two-dimensional square lattice. The privileged 
direction is the (1, 1) direction. ( b )  A branched polymer which can only grow in the 
upward direction. Asterisks (e) mark the terminations, a square marks the root and circles 
mark the three point branches. 

In mean field theory, V I I  = 3 and vl = a  and the upper critical dimension d ,  is 7. 
Using a field theory similar to that developed for isotropic animals (Lubensky and 
Isaacson 1979, 1981a, b, Lubensky and McKane 1981, Parisi and Sourlas 1981) we 
calculate vi/, vi, 0 and the critical point exponents 711 and 71 to first order in E = 7 -d.  

Let X = (XL, XI/)  be a point in a d-dimensional space. Xi1 is the component of X 
along the privileged direction (the (1, 1,l) direction for a 3d cubic lattice). We 
introduce two fields &(X) and $(X) and choose the convention that propagation 
between &(Xl,Ti) and $(XL,Xi)  can only occur if Xi >TI. We introduce the 
directed bond element 

K 

0 otherwise 

if Xi <XI, and X and X' are nearest neighbours 
K ( X , X ' ) = {  

and the Hamiltonian 

(3) 

where U represents the effects of repulsive interactions and 

r(XX') = - K(XX'). ( 5 )  

The Fourier transform of r for small 4 is 

r ( 4 )  = r+4: +iqll 
r = l - z K  

where I is the number of forward nearest neighbours (equal to d for a cubic lattice 
in d dimensions). 
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The partition function associated with H is the generating function for lattice 
animals, or dilute branched polymers, with no loops 

Z = Tr e-H 

where N,, Ne, N2 and N3 are respectively the number of polymers, terminations, 
bonds and thret point branches. C(N,,  Ne,  N 2 , N 3 )  is the number of polymer 
configurations with Np polymers, Ne terminations, N2 bonds and N 3  three branches. To 
obtain (76) from ( 7 a )  we used the fact that Ne = Np + N3 (see figure 1). In order to study 
the statistics of a single polymer (animal) we need to take the dilute limit of equation (76) 

= 1 K N2A (N2) - ( K  - Kc)e-  
N z  

where fl is the volume of the system. 
The analysis of the mean field theory for this problem proceeds almost exactly as 

for the ARB2 polymers of Lubensky and Isaacson (1981b). The mean field equations 
of state are 

& -4~0’- h + 2 u d 2 Q  = O  

rQ - w ~ Q  - L + 2 u 6 Q 2 = 0 .  

Note that 0 + 0 as 6+ 0 so the effects of repulsive interactions do not appear in mean 
field theory in this limit. Using equations (7) and (8) we find 

Q =  ( ~ h ) - ’ [ r - ( r ~ - 2 ~ h ) ~ ’ ~ ] -  1 (10) 

so that OMF = $. The critical point is at rc = a. 
parameters q5 = CL - Q and & = 6-  b to yield an effective Hamiltonian 

To study spatial correlations and fluctuations we introduce the shifted order 

in the dilute limit, where 

t ( q )  = r -  w b  + q 2  +iq = r + q 2  + iq 

T = 2 u b 2 .  

Thus from equations (9) and (1 1) we find 

G~,(q)=(6(4)CL(-q))= ( J r - 2 w h + q :  +iqd-’ 

Gw(4) = ( $ ( q ) $ ( - q ) )  = -TIG&(q)I2. 
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From this and the relation 

Ga(q = 0) = 1 n2K“A(n) - IK - KJ-” 
we conclude that 

1 1 1 Y = I  U ,  = a  U11 = 2.  

The critical point exponents t)* and t)11 are defined via 

so that q1 = 0 and 711 = 0. 
Note that we have defined y in terms of G a .  As with ARB2 polymers, we could 

define a y- which would be from equations (9), (12) and (13). Note that the 
exponents in equation (15) result when h is held constant and t is varied. If w d  is 
fixed and t is varied, one obtains different exponents, as in the case of isotropic animals 

(17) 

We now develop renormalisation group recursion relations in the usual way. The 

1 Yo = 1 V I 0  = 2 UlIO = 1.  

diagrams contributing to I ,  T and w are shown in figure 2. We obtain 

d t / d l = ( 2 - t ) , ) t + a w 2 T K , - ~ ( 1  + f )  * ( 1 8 ~ )  

dT/dl =(Z-t)L)f -Qw2T2&-l(l + t ) ’ - 3  (186)  

d w/dl= w If( E - 2 - 7711 - 2 t) I) - w * TKd - 1 ( 1 + f1-7 ( 1 8 ~ )  

t71 = -$w’TK,.. r ( i  + (18d) 

-:w2TK,-I(1 + f ) - 3 .  (18e) 

From this we see that the upper critical dimension is 7 and the variable g = &il;iw2T&-I, 
satisfying 

(19) dg/d l=  g [ E  - 18g( l+  1 ) - ’ ] ,  

controls the critical behaviour in 7 - E  dimensions. 
From these equations we obtain 

I 1 
g* = &E t) i  = -g& 711 = -a& 
UUQ = 1 + & E  (20) 

To obtain the exponents at constant wh, we have to solve the equation of state as for 
the case of isotropic animals. The analysis is the same as in Lubensky and Isaacson 
(1979, 1981b) and Lubensky and McKane (1981). We find that 

1 1 5  
U L Q  = 2 + % E  yo = (2 - t ) ) V Q  = 1 + :E. 

We should like to conclude with a few observations. First we note that the directed 
animals defined here have all bonds along the positive axes, no closed loops and only 
one root. One could imagine generalised directed polymers with many roots and 
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lo) f? 

Figwe 2. Diagrams contributing to r(a),  T ( b )  and w ( c ) .  The full line represents Gj, and 
the broken line represents G s  

closed loops but still with all bonds in the forward direction. These are currently 
under study. Apparently the addition of loops does not change the universality class, 
at least in two dimensions (Nadal 1982). Secondly, one could imagine another class 
of animals that are more closely related to directed percolation. Here one first creates 
non-directed animals and then studies the statistics of directed animals in the interior 
of the non-directed animals. This problem appears to be considerably more compli- 
cated than the one stated here. Thirdly, Parisi and Sourlas (1981) have shown that 
the problem of isotropic animals is equivalent to that of the Yang-Lee edge singularity 
in two fewer dimensions. Because of the anisotropy we have not been able to find a 
similar relation for directed animals. 

However, we note that the expressions (20) for uL and 6 for directed animals to 
first order in E = 7 - d  are the same as those for U and 6 for non-directed ARBl 
animals (Lubensky and Isaacson 1981b) to first order in ~ ’ = 8 - d .  Furthermore in 
two dimensions, uL is close to if not exactly 4 (Nadal 1982) which is the value for U 
in three dimensions (Parisi and Sourlas 1981). It is possible that uL and 6 for directed 
animals in d dimensions are the same as U and 6 for non-directed ARBz animals in 
d + 1 dimensions for all 2 < d < 7. 

Finally, we comment on a possible amusing application of directed animals. It 
does not take much imagination to think of figure l (6 )  as a green tree in a pasture. 
Thus one could imagine that directed animals might give an estimate of the height 
to width ratio of the tree as a function of its mass N 

(22) HI W - b / t L  - N”-”.  
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One could then imagine a forest of trees as a semi-dilute solution of directed animals 
and study H/  W as a function of the number of trees per unit area U. Arguments 
similar to those used to study polymer solutions (Daoud et a1 1975) yield 

H/  W = Nq- 'Lf (u /u*)  

where the crossover concentration U* satisfies 
- ~ - ( d - l ) v -  or t d - 1  *, U 1  

Note. While this manuscript was in preparation, we received a preprint from S Redner 
and Z R Yang in which they study the problem of directed animals. They point out 
that the mean field critical exponents Y B  and v L  are t and a and that the upper critical 
dimension is 7. They also evaluate A(n)  exactly in dimensions 2 to 8 for n s 17, d = 2 
and n s 6  for d = 8 to obtain VI ,  uL and 8. They find v L  =; and 8 =0.53*0.01 at 
d = 2 in agreement with the values for Y and 0 for non-directed ARB2 polymers in 3d. 

We should like to thank J Vannimenus, B Derrida and J P Nadal for helpful discussion. 
This work was supported by ONR under contract N00014-0106. 
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